khoj/src/main.py

154 lines
5.1 KiB
Python
Raw Normal View History

# Standard Packages
import sys
import pathlib
from typing import Optional
# External Packages
import uvicorn
from fastapi import FastAPI
# Internal Packages
2021-08-23 06:00:54 +02:00
from search_type import asymmetric, symmetric_ledger, image_search
from utils.helpers import get_from_dict
from utils.cli import cli
app = FastAPI()
@app.get('/search')
def search(q: str, n: Optional[int] = 5, t: Optional[str] = None):
if q is None or q == '':
print(f'No query param (q) passed in API call to initiate search')
return {}
user_query = q
results_count = n
if (t == 'notes' or t == None) and notes_search_enabled:
# query notes
hits = asymmetric.query_notes(
user_query,
corpus_embeddings,
entries,
bi_encoder,
cross_encoder,
top_k)
# collate and return results
return asymmetric.collate_results(hits, entries, results_count)
if (t == 'ledger' or t == None) and ledger_search_enabled:
# query transactions
hits = symmetric_ledger.query_transactions(
user_query,
transaction_embeddings,
transactions,
symmetric_encoder,
symmetric_cross_encoder)
# collate and return results
return symmetric_ledger.collate_results(hits, transactions, results_count)
2021-08-23 06:00:54 +02:00
if (t == 'image' or t == None) and image_search_enabled:
# query transactions
hits = image_search.query_images(
user_query,
image_embeddings,
image_encoder,
results_count,
args.verbose)
# collate and return results
return image_search.collate_results(
hits,
image_names,
image_config['input-directory'],
results_count)
else:
return {}
@app.get('/regenerate')
def regenerate(t: Optional[str] = None):
if (t == 'notes' or t == None) and notes_search_enabled:
# Extract Entries, Generate Embeddings
global corpus_embeddings
global entries
entries, corpus_embeddings, _, _, _ = asymmetric.setup(
org_config['input-files'],
org_config['input-filter'],
pathlib.Path(org_config['compressed-jsonl']),
pathlib.Path(org_config['embeddings-file']),
regenerate=True,
verbose=args.verbose)
if (t == 'ledger' or t == None) and ledger_search_enabled:
# Extract Entries, Generate Embeddings
global transaction_embeddings
global transactions
transactions, transaction_embeddings, _, _, _ = symmetric_ledger.setup(
ledger_config['input-files'],
ledger_config['input-filter'],
pathlib.Path(ledger_config['compressed-jsonl']),
pathlib.Path(ledger_config['embeddings-file']),
regenerate=True,
verbose=args.verbose)
2021-08-23 06:00:54 +02:00
if (t == 'image' or t == None) and image_search_enabled:
# Extract Images, Generate Embeddings
global image_embeddings
global image_names
image_names, image_embeddings, _ = image_search.setup(
pathlib.Path(image_config['input-directory']),
pathlib.Path(image_config['embeddings-file']),
regenerate=True,
verbose=args.verbose)
return {'status': 'ok', 'message': 'regeneration completed'}
if __name__ == '__main__':
args = cli(sys.argv[1:])
# Initialize Org Notes Search
org_config = get_from_dict(args.config, 'content-type', 'org')
notes_search_enabled = False
if org_config and ('input-files' in org_config or 'input-filter' in org_config):
notes_search_enabled = True
entries, corpus_embeddings, bi_encoder, cross_encoder, top_k = asymmetric.setup(
org_config['input-files'],
org_config['input-filter'],
pathlib.Path(org_config['compressed-jsonl']),
pathlib.Path(org_config['embeddings-file']),
args.regenerate,
args.verbose)
# Initialize Ledger Search
ledger_config = get_from_dict(args.config, 'content-type', 'ledger')
ledger_search_enabled = False
if ledger_config and ('input-files' in ledger_config or 'input-filter' in ledger_config):
ledger_search_enabled = True
transactions, transaction_embeddings, symmetric_encoder, symmetric_cross_encoder, _ = symmetric_ledger.setup(
ledger_config['input-files'],
ledger_config['input-filter'],
pathlib.Path(ledger_config['compressed-jsonl']),
pathlib.Path(ledger_config['embeddings-file']),
args.regenerate,
args.verbose)
2021-08-23 06:00:54 +02:00
# Initialize Image Search
image_config = get_from_dict(args.config, 'content-type', 'image')
image_search_enabled = False
if image_config and 'input-directory' in image_config:
image_search_enabled = True
image_names, image_embeddings, image_encoder = image_search.setup(
pathlib.Path(image_config['input-directory']),
pathlib.Path(image_config['embeddings-file']),
args.regenerate,
args.verbose)
# Start Application Server
uvicorn.run(app)