khoj/src/main.py

205 lines
7.9 KiB
Python
Raw Normal View History

# Standard Packages
import sys
import json
from typing import Optional
# External Packages
import uvicorn
from fastapi import FastAPI
# Internal Packages
from src.search_type import asymmetric, symmetric_ledger, image_search
from src.utils.helpers import get_absolute_path, get_from_dict
from src.utils.cli import cli
from src.utils.config import SearchType, SearchModels, TextSearchConfig, ImageSearchConfig, SearchConfig, ProcessorConfig, ConversationProcessorConfig
from src.processor.conversation.gpt import converse, message_to_log, message_to_prompt, understand, summarize
# Application Global State
model = SearchModels()
search_config = SearchConfig()
processor_config = ProcessorConfig()
app = FastAPI()
@app.get('/search')
def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
if q is None or q == '':
print(f'No query param (q) passed in API call to initiate search')
return {}
user_query = q
results_count = n
if (t == SearchType.Notes or t == None) and model.notes_search:
# query notes
hits = asymmetric.query(user_query, model.notes_search)
# collate and return results
return asymmetric.collate_results(hits, model.notes_search.entries, results_count)
if (t == SearchType.Music or t == None) and model.music_search:
# query music library
hits = asymmetric.query(user_query, model.music_search)
# collate and return results
return asymmetric.collate_results(hits, model.music_search.entries, results_count)
if (t == SearchType.Ledger or t == None) and model.ledger_search:
# query transactions
hits = symmetric_ledger.query(user_query, model.ledger_search)
# collate and return results
return symmetric_ledger.collate_results(hits, model.ledger_search.entries, results_count)
if (t == SearchType.Image or t == None) and model.image_search:
2021-08-23 06:00:54 +02:00
# query transactions
hits = image_search.query(user_query, results_count, model.image_search)
2021-08-23 06:00:54 +02:00
# collate and return results
return image_search.collate_results(
hits,
model.image_search.image_names,
search_config.image.input_directory,
2021-08-23 06:00:54 +02:00
results_count)
else:
return {}
@app.get('/regenerate')
def regenerate(t: Optional[SearchType] = None):
if (t == SearchType.Notes or t == None) and search_config.notes:
# Extract Entries, Generate Embeddings
model.notes_search = asymmetric.setup(search_config.notes, regenerate=True)
if (t == SearchType.Music or t == None) and search_config.music:
# Extract Entries, Generate Song Embeddings
model.music_search = asymmetric.setup(search_config.music, regenerate=True)
if (t == SearchType.Ledger or t == None) and search_config.ledger:
# Extract Entries, Generate Embeddings
model.ledger_search = symmetric_ledger.setup(search_config.ledger, regenerate=True)
if (t == SearchType.Image or t == None) and search_config.image:
2021-08-23 06:00:54 +02:00
# Extract Images, Generate Embeddings
model.image_search = image_search.setup(search_config.image, regenerate=True)
2021-08-23 06:00:54 +02:00
return {'status': 'ok', 'message': 'regeneration completed'}
@app.get('/chat')
def chat(q: str):
# Load Conversation History
chat_log = processor_config.conversation.chat_log
meta_log = processor_config.conversation.meta_log
# Converse with OpenAI GPT
metadata = understand(q, api_key=processor_config.conversation.openai_api_key)
if get_from_dict(metadata, "intent", "memory-type") == "notes":
query = get_from_dict(metadata, "intent", "query")
result_list = search(query, n=1, t=SearchType.Notes)
collated_result = "\n".join([item["Entry"] for item in result_list])
gpt_response = summarize(collated_result, metadata["intent"]["memory-type"], user_query=q, api_key=processor_config.conversation.openai_api_key)
else:
gpt_response = converse(q, chat_log, api_key=processor_config.conversation.openai_api_key)
# Update Conversation History
processor_config.conversation.chat_log = message_to_prompt(q, chat_log, gpt_message=gpt_response)
processor_config.conversation.meta_log= message_to_log(q, metadata, gpt_response, meta_log)
return {'status': 'ok', 'response': gpt_response}
def initialize_search(config, regenerate, verbose):
model = SearchModels()
search_config = SearchConfig()
# Initialize Org Notes Search
search_config.notes = TextSearchConfig.create_from_dictionary(config, ('content-type', 'org'), verbose)
if search_config.notes:
model.notes_search = asymmetric.setup(search_config.notes, regenerate=regenerate)
# Initialize Org Music Search
search_config.music = TextSearchConfig.create_from_dictionary(config, ('content-type', 'music'), verbose)
if search_config.music:
model.music_search = asymmetric.setup(search_config.music, regenerate=regenerate)
# Initialize Ledger Search
search_config.ledger = TextSearchConfig.create_from_dictionary(config, ('content-type', 'ledger'), verbose)
if search_config.ledger:
model.ledger_search = symmetric_ledger.setup(search_config.ledger, regenerate=regenerate)
2021-08-23 06:00:54 +02:00
# Initialize Image Search
search_config.image = ImageSearchConfig.create_from_dictionary(config, ('content-type', 'image'), verbose)
if search_config.image:
model.image_search = image_search.setup(search_config.image, regenerate=regenerate)
return model, search_config
def initialize_processor(config, verbose):
# Initialize Conversation Processor
processor_config = ProcessorConfig()
processor_config.conversation = ConversationProcessorConfig.create_from_dictionary(config, ('processor', 'conversation'), verbose)
conversation_logfile = processor_config.conversation.conversation_logfile
if processor_config.conversation.verbose:
print('INFO:\tLoading conversation logs from disk...')
if conversation_logfile.expanduser().absolute().is_file():
# Load Metadata Logs from Conversation Logfile
with open(get_absolute_path(conversation_logfile), 'r') as f:
processor_config.conversation.meta_log = json.load(f)
# Extract Chat Logs from Metadata
processor_config.conversation.chat_log = ''.join(
[f'\n{item["by"]}: {item["message"]}'
for item
in processor_config.conversation.meta_log])
print('INFO:\tConversation logs loaded from disk.')
else:
# Initialize Conversation Logs
processor_config.conversation.meta_log = []
processor_config.conversation.chat_log = ""
return processor_config
@app.on_event('shutdown')
def shutdown_event():
# No need to create empty log file
if not processor_config.conversation.meta_log:
return
elif processor_config.conversation.verbose:
print('INFO:\tSaving conversation logs to disk...')
# Summarize Conversation Logs for this Session
session_summary = summarize(processor_config.conversation.chat_log, "chat", api_key=processor_config.conversation.openai_api_key)
# Save Conversation Metadata Logs to Disk
conversation_logs = {"session": { "summary": session_summary, "meta": processor_config.conversation.meta_log}},
conversation_logfile = get_absolute_path(processor_config.conversation.conversation_logfile)
with open(conversation_logfile, "w+", encoding='utf-8') as logfile:
json.dump(conversation_logs, logfile)
print('INFO:\tConversation logs saved to disk.')
if __name__ == '__main__':
# Load config from CLI
args = cli(sys.argv[1:])
# Initialize Search from Config
model, search_config = initialize_search(args.config, args.regenerate, args.verbose)
2021-08-23 06:00:54 +02:00
# Initialize Processor from Config
processor_config = initialize_processor(args.config, args.verbose)
# Start Application Server
if args.socket:
uvicorn.run(app, proxy_headers=True, uds=args.socket)
else:
uvicorn.run(app, host=args.host, port=args.port)